

Ermittlung der Grünzugfestigkeit erdfeuchter Zementleimgemische als Grundlage für die Optimierung der Produktion von sofort entschalten Betonwaren

Fakultät für Architektur und Bauingenieurwesen 01. Februar 2019

Erdfeuchter Beton für die Herstellung von Betonwarensofortige Entschalung

Anwendungsbeispiele in der Praxis

Erdfeuchter Beton- sofortige Entschalung

- Unmittelbar formgebendes Produktionsverfahren: endgültige Form wird innerhalb weniger Sekunden-Minuten erreicht und beibehalten
- Ohne chemische Bindungen durch die Zementreaktion (Hydratation)

Erdfeuchter Beton- Anwendungen im Bereich Ortbeton

Walzbeton Ga-La-Bau, Estriche

Erdfeuchter Beton- Verarbeitung

Erdfeuchter Beton- Unterscheidungsmöglichkeiten

Drei Betone mit Unterschieden:

- · Zement,
- w/z-Wert,
- Zusatzstoff,
- Sieblinien

Erdfeuchter Beton- Unterscheidungsmöglichkeiten

Drei Betone mit Unterschieden:

- · Zement,
- w/z-Wert,
- Zusatzstoff,
- Sieblinien

Optisch ohne erkennbare Unterschiede

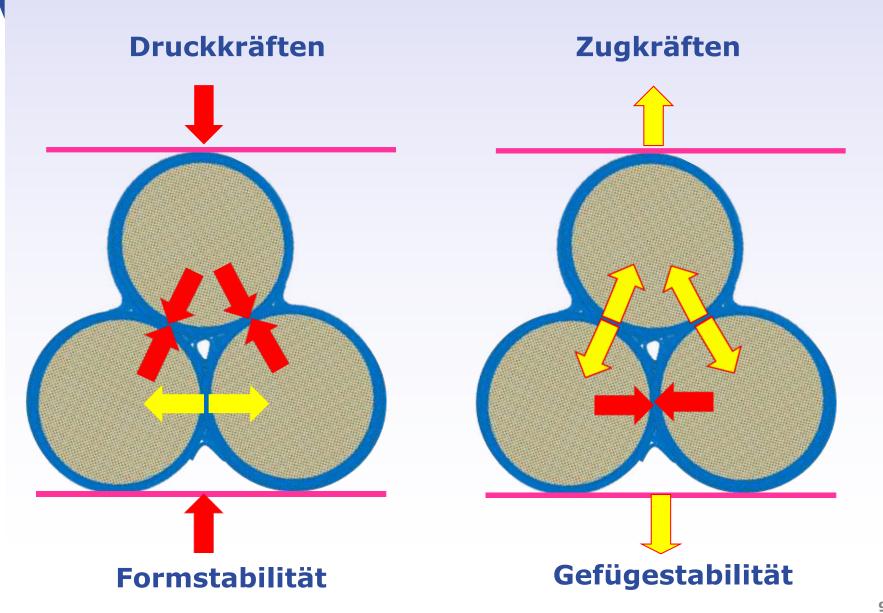
- "Erdfeuchter Beton, der für besondere Verdichtungsverfahren entworfen wurde": Konsistenz normativ nicht klassifiziert
- Prüfverfahren zur Abgrenzung der unterschiedlichen Eigenschaften steht nicht zur Verfügung
- Entwicklung neuer Rezepturen (Wechsel der Ausgangsstoffe) findet bisher in situ durch Anwendung in der Produktion statt

Zielstellung der Arbeit

- Theoretische Grundlagen für Bindemechanismen der Haftkräfte in erdfeuchten Zementleimen identifizieren
- Prüfverfahren entwickeln, mit dem erdfeuchte Zementleimgemische voneinander unterschieden werden können
- Optimierung von erdfeuchten Zementleimgemischen anhand von Versuchsergebnissen

Erdfeuchte Zementleime – erdfeuchte Betone

< 100 µ, größte Partikelanzahl, größte Oberfläche, Homogener, Geringerer Einfluss von Reibungskräften, Allgemeine Betrachtungsebene für Haftkräfte in der Literatur


16 mm GK, div. Gesteinskörnungen möglich, Variationen von Sieblinien Größere Prüfstreuung vermutet

Zementleim - Gemisch aus Feststoffen mit unterschiedlicher Größe und Form

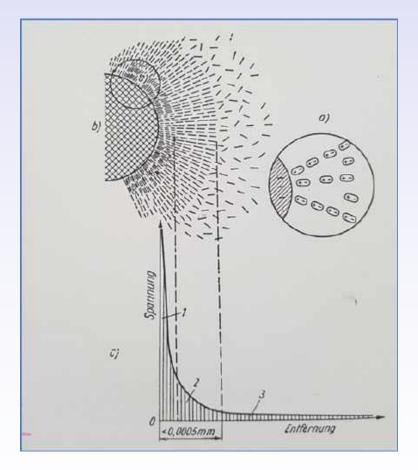
Haftkräfte- Voraussetzung für die Übertragung von

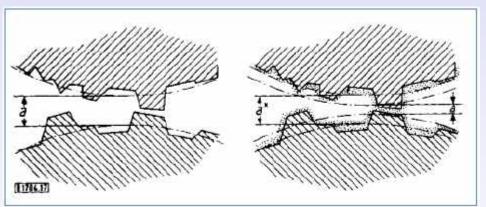
Haftkräfte - Beispiele

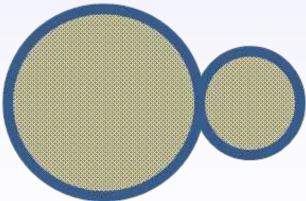
Druckfestigkeit von feuchtem Quarzsand 100g und Wasser 20 ml [Czernin, Zementchemie]

Haftkräfte - Übersicht

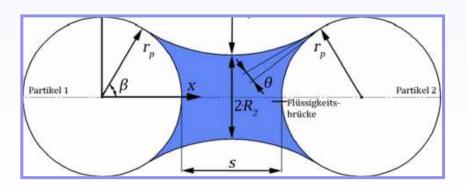

- 1. Adsorptionsschichten aus Wasser
- 2. Flüssigkeitsbrücken
- 3. Van-der-Waals-Kräfte
- 4. Van-der-Waals-Kräfte aufgrund von plastischen Verformungen
- 5. Elektrostatische Kräfte (anziehend und abstoßend)
- 6. Gewichtskräfte
- 7. Chemische Bindungen
- 8. Magnetische Kräfte
- 9. Reibung und Verzahnung

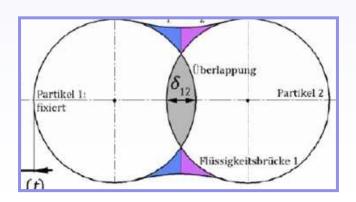

Haftkräfte - Übersicht


- 1. Adsorptionsschichten aus Wasser
- 2. Flüssigkeitsbrücken
- 3. Van-der-Waals-Kräfte
- 4. Van-der-Waals-Kräfte aufgrund von plastischen Verformungen
- 5. Elektrostatische Kräfte (anziehend und abstoßend)
- 6. Gewichtskräfte
- 7. Chemische Bindungen
- 8. Magnetische Kräfte
- 9. Reibung und Verzahnung

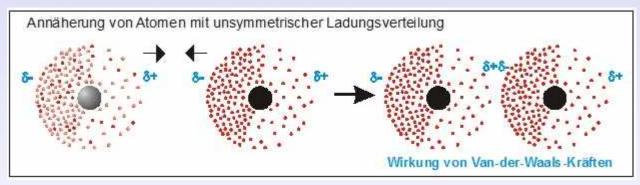

Gegenstand bisheriger Untersuchungen [Wierig, Bornemann, Hüskens], Druckfestigkeit

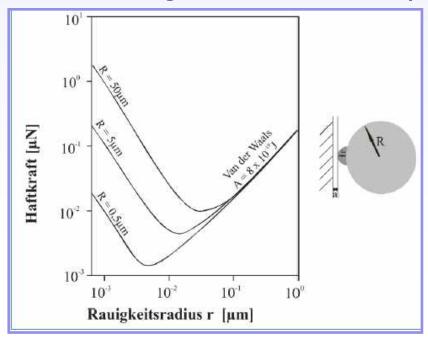
Haftkräfte - Adsorptionsschichten aus Wasser

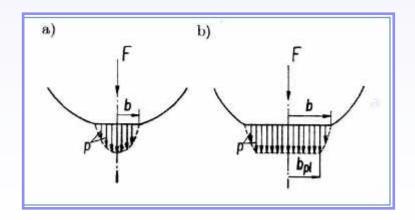


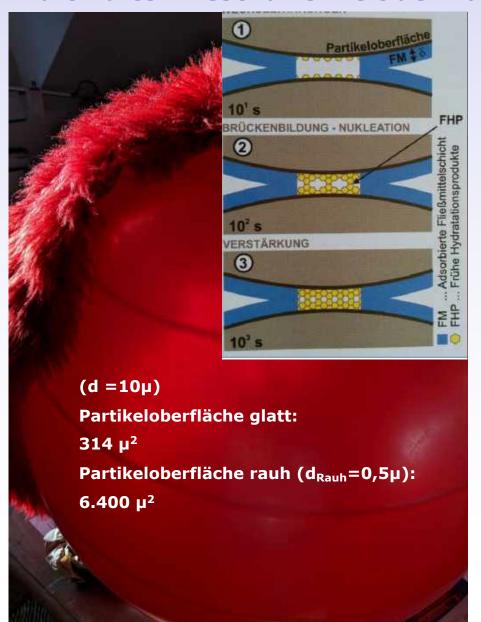


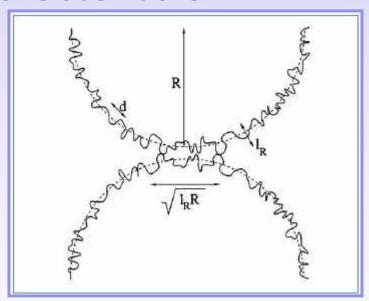
- Zugspannung der adsorbierten Wasserfilme
- Kontaktfläche

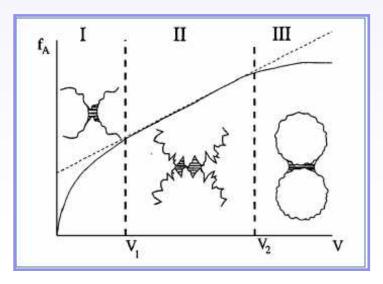

Haftkräfte - Flüssigkeitsbrücken (Kapillarkräfte)

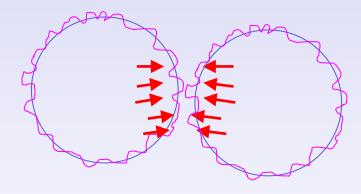


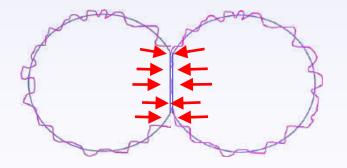

Haftkräfte - Van-der-Waals-Kräfte


Schwache Bindungskräfte auf molekularer Ebene durch temporäre Dipole


Stärkere Bindungskräfte auf Ebene Festkörper-Festkörper




Haftkräfte - Beschaffenheit der Partikeloberflächen



Partikeloberflächen- Deformationen durch Haftkräfte

Partikel mit Rauhigkeiten
[Wasserfilm nicht dargestellt]

Haftkräfte führen zu

- Deformationen der Rauhigkeiten
- Deformationen der Partikel (elastisch oder plastisch)

Vergrößerung der Kontaktfläche führt zu Vergrößerung der Haftkräfte

Deformationsverhalten der Partikel ist abhängig von dem Materialverhalten, der Mikrohärte

Haftkräfte - Beispielrechnung

Ein Kontakt von zwei Zementpartikeln, 10 μ (=D1) und 1 μ (=D2) Annahme: ideal rund und glatt, Wasserfilm von 0,03 μ zwei verschiedene Mikrohärten der Oberfläche

Kraftart

Adsorptionsfilme

Flüssigkeitsbrücke

Van-der-Waal

Van-der-Waal

plastisch

Gesamthaftkraft

Gewichtskraft des

kleineren Partikels F_{P2}

Gesamtverformung [Nanometer]

Haftkräfte - Beispielrechnung

Ein Kontakt von zwei Zementpartikeln, 10 μ (=D1) und 1 μ (=D2)

Annahme: ideal rund und glatt, Wasserfilm von 0.03μ

zwei verschiedene Mikrohärten der Oberfläche

Zement ohne		
Hydratationsprodukte		
Mikrohärte 732 N/mm ²		
(ca. Feldspat)		

	` ' '	
Kraftart	[N]	Prozent
Adsorptionsfilme	1,67E-07	10,87
Flüssigkeitsbrücke	1,28E-06	83,29
Van-der-Waal	1,99E-08	1,29
Van-der-Waal		
plastisch	6,99E-08	4,55
Gesamthaftkraft	1,54E-06	100,00
Gewichtskraft des		
kleineren Partikels F _{P2}	1,59E-11	0,001

Gesamtverformung	0,7
[Nanometer]	

Haftkräfte - Beispielrechnung

Ein Kontakt von zwei Zementpartikeln, 10 μ (=D1) und 1 μ (=D2)

Annahme: ideal rund und glatt, Wasserfilm von 0.03μ

zwei verschiedene Mikrohärten der Oberfläche

Zement ohne			
Hydratationsprodukte			
Mikrohärte 732 N/mm ²			
(ca. Feldspat)			

Kraftart	[N]	Prozent
Adsorptionsfilme	1,67E-07	10,87
Flüssigkeitsbrücke	1,28E-06	83,29
Van-der-Waal	1,99E-08	1,29
Van-der-Waal		
plastisch	6,99E-08	4,55
Gesamthaftkraft	1,54E-06	100,00
Gewichtskraft des		
kleineren Partikels F _{P2}	1,59E-11	0,001

Zement mit ersten		
Hydratationsprodukten		
Mikrohärte 2,4 N/mm ²		
(ca. Talk)		

[N]	Prozent
1,67E-07	0,73
1,28E-06	5,62
1,99E-08	0,09
2,13E-05	93,56
2,28E-05	100,00
1 505 11	0.00007
1,59E-11	0,00007

maximale		
Reichweite		
[Nanometer]		
500 nm		
60(2 x dlq)		
50 nm		
50 nm		

Gesamtverformung	0,7
[Nanometer]	

2	210

Haftkräfte - Zusammenfassung

Auswirkungen auf Haftkräfte von:

- Partikelform (rund/ eckig/ flach)
- Partikeloberflächen (glatt/ rauh)
- Härte der Partikeloberflächen (hart/ weich)
- Wasserfilm (Dicke/ Verteilung)

Theoretische Annäherung bietet keine eindeutige Vorhersage über die zentrische Zugkraft

Ermittlung der theoretischen Zugfestigkeit erdfeuchter Zementleime zusätzlich abhängig von

- Reibung und Verzahnung
- Modelle der Packungsdichte (Koordinationszahlen)
- Annahmen zu Partikeldurchmessern und -verteilungen

Daher: Überprüfung des Verhaltens durch Versuche

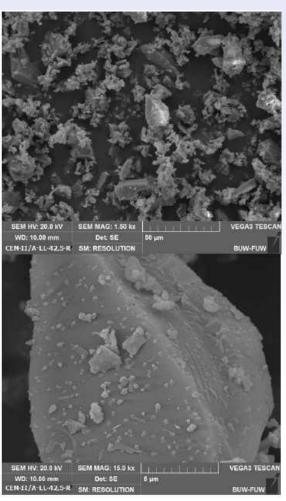
Versuchsprogramm

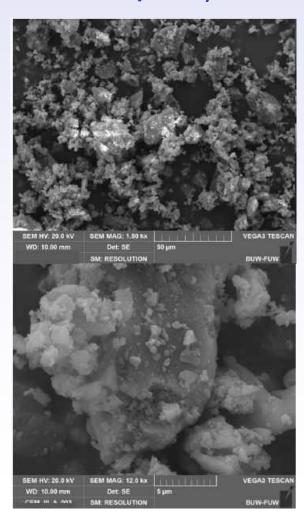
Zentrische Zugkräfte an Zementleimen:

- Drei verschiedene Zemente einer Festigkeitsklasse
- Jeder Zement mit jedem der vier Zusatzstoffe
- Jeder Zement mit Kombinationen aus zwei Zusatzstoffen
- 5-15 M.-% an Zusatzstoffen:
 Prüfung der Detektierbarkeit von Unterschieden anhand der Messwerte (Zugkraft, Dehnweg)

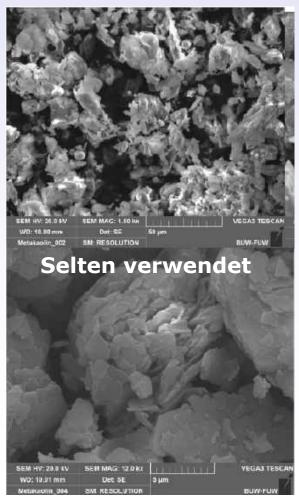
Fragestellungen:

- Können Unterschiede im Zug-Dehnungsverhalten von Zementleimen variierender Zusammensetzung gemessen werden?
- Besteht ein Zusammenhang zwischen der Granulometrie (Sieblinie, Feinheit) und der Zugfestigkeit?
- Zusammenhang zwischen Wassergehalt und Zugfestigkeit?
- Wird das Zugdehnungsverhalten von den Ausgangsstoffen systematisch erkennbar beeinflusst?


Versuche- Beschaffenheit der verwendeten Ausgangsstoffe REM 50 μ , 5 μ

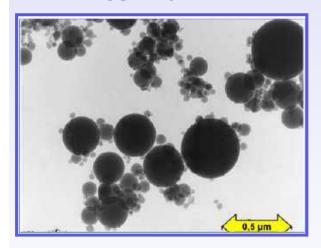

Det SE

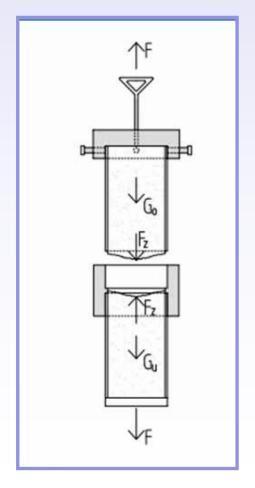
CEM II/A-LL 42,5 R


CEM III/A 42,5 R

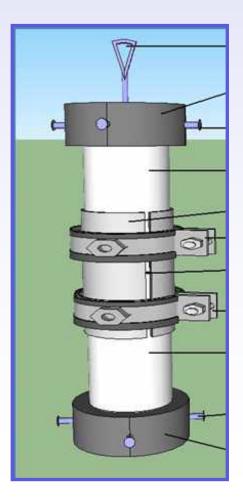
Versuche- Beschaffenheit der verwendeten Ausgangsstoffe REM 50 μ , 5 μ

Flugasche Metakaolin Siliziumcarbid



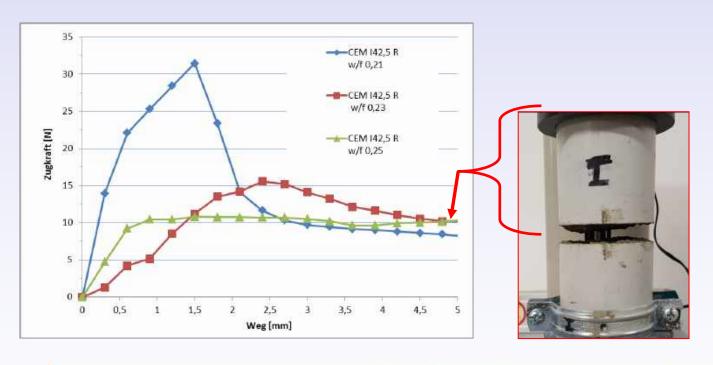

Versuche- Beschaffenheit der verwendeten Ausgangsstoffe REM $0.5~\mu$

Mikrosilika

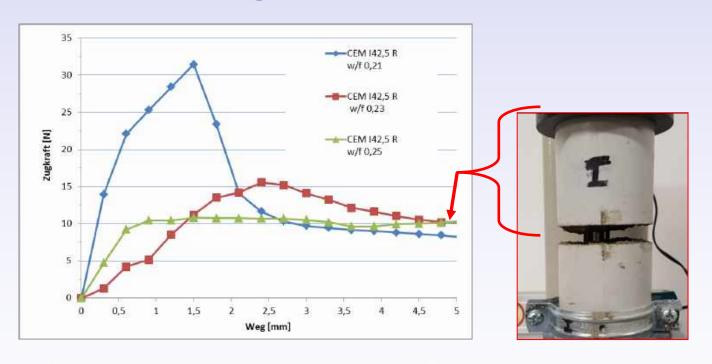


Unbekannt bei erdfeuchten Betonen

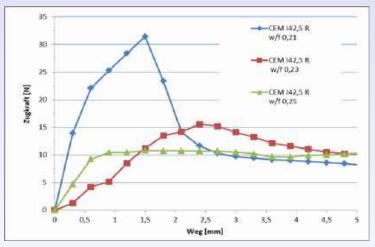
Versuchseinrichtung



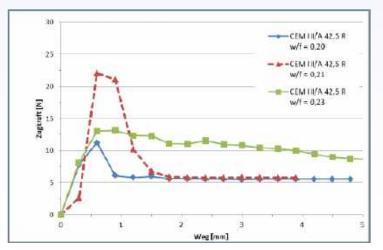
Versuchseinrichtung



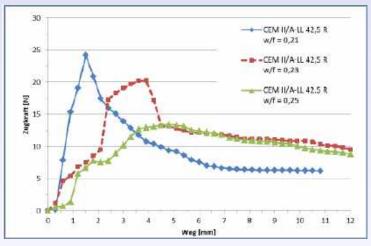
Resultate der Zugversuche

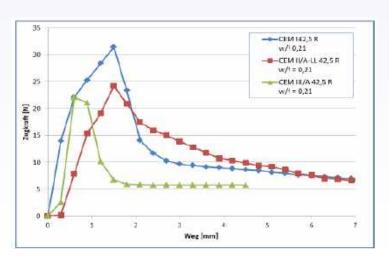

Mischung	CEM I42,5 R w/z 0,21	CEM I42,5 R w/z 0,23	CEM I42,5 R w/z 0,25
w/f-Wert			
Oberfläche im Pulver[cm²/g]	4846		
Oberfläche im Leim O _L [cm2/g]	4005		
Wasserfilmdicke [µ]	0,43		
Max. Zugkraft [N]		15,55	
Weg bei Max. Zugkraft [mm]			11,10
Zugkraft [N] bei 0,6 mm Weg	22,1		
Verdichtungsgrad [%]			

Resultate der Zugversuche



Mischung	CEM I42,5 R w/z 0,21	CEM I42,5 R w/z 0,23	CEM I42,5 R w/z 0,25
w/f-Wert	0,21	0,23	0,25
Oberfläche im Pulver[cm²/g]	4846	4846	4846
Oberfläche im Leim O _L [cm2/g]	4005	3940	3877
Wasserfilmdicke [µ]	0,43	0,47	0,52
Max. Zugkraft [N]	31,45	15,55	10,80
Weg bei Max. Zugkraft [mm]	1,50	2,40	11,10
Zugkraft [N] bei 0,6 mm Weg	22,1	4,2	9,25
Verdichtungsgrad [%]	94,48	98,41	99,72


Resultate der Zugversuche: Zement + Wasser


CEM I

CEM III/A

CEM II/A-LL

w/f = 0.21 - alle Zemente

Resultate der Zugversuche

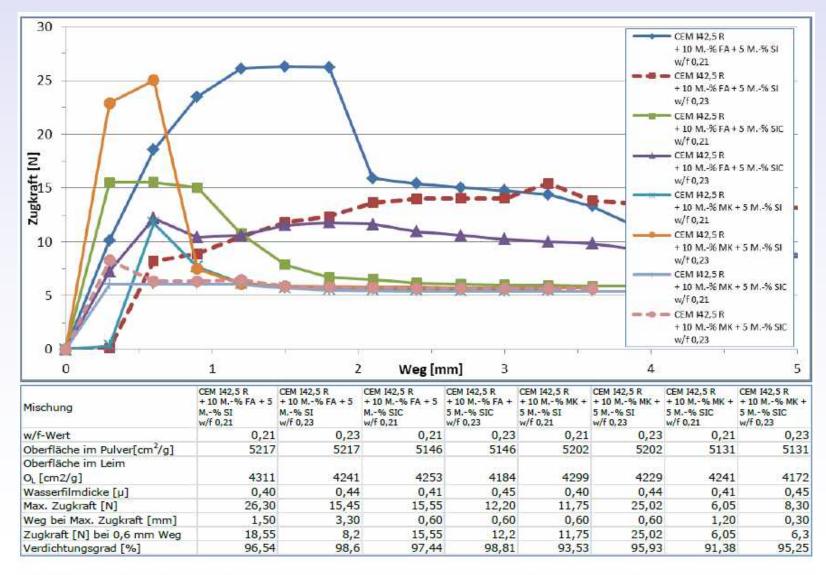


Abbildung 131: CEM I mit je zwei Zusatzstoffen bei w/f-Werten von 0,21 und 0,23

Parameter für eine Optimierung:

- 1. Hohe Zugkraft bei geringen Dehnwegen
- 2. Maximale Zugkraft bei geringen Dehnwegen
- 3. Hoher Verdichtungsgrad
- 4. Hoher w/f-Wert

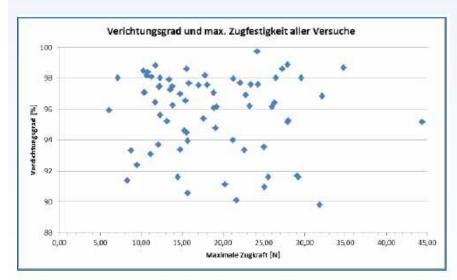


Abbildung 145: maximalen Zugkräfte in Abhängigkeit der erreichten Verdichtun

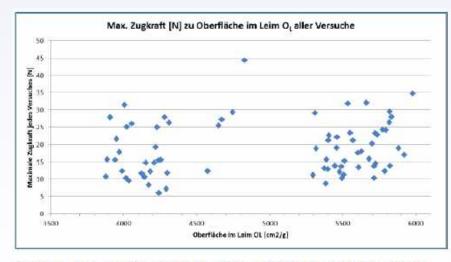
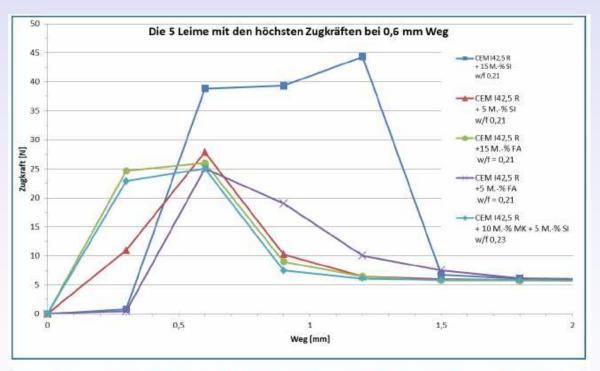
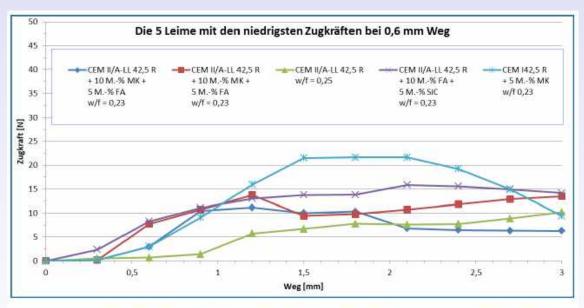




Abbildung 146: Maximalwerte der Zugkraft aller Versuche bei der jeweiligen Oberfläche im Leim

Mischung	w/f-Wert	Oberfläche im Pulver[cm²/g]	Oberfläche im Leim O _L [cm2/g]	Wasserfilmdick e [μ]		Weg bei Max. Zugkraft [mm]	Zugkraft [N] bei 0,6 mm Weg	Verdichtungs- grad [%]
CEM I42,5 R + 15 M% SI w/f 0,21	0,21	5839	4825	0,36	44,35	1,20	38,85	93,37
CEM I42,5 R + 5 M% SI w/f 0,21	0,21	5177	4279	0,41	27,90	0,60	27,9	95,15
CEM I42,5 R +15 M% FA w/f = 0,21	0,21	4906	4054	0,43	26,00	0,60	26	95,60
CEM I42,5 R +5 M% FA W/F = 0,21	0,21	4866	4022	0,43	25,05	0,60	25,05	96,14
CEM 142,5 R + 10 M% MK + 5 M% SI w/f 0,23	0,23	5202	4229	0,44	25,02		25,02	95,93

Abbildung 153: Verläufe und Kenndaten der Rezepturen mit den höchsten Zugkräften bei 0,6 mm Weg

Mischung	w/f-Wert	Oberfläche im Pulver[cm²/g]	Oberfläche im Leim O _L [cm2/g]	Wasserfilmdick e [μ]		Weg bei Max. Zugkraft [mm]	Zugkraft [N] bei 0,6 mm Weg	Verdichtungs- grad [%]
CEM II/A-LL 42,5 R + 10 M% MK + 5 M% SIC W/f = 0,23	0,23	6512	5295	0,35	11,18	1,80	0,15	97,59
CEM II/A-LL 42,5 R + 10 M% MK + 5 M% FA w/F = 0,23	0,23	7042	5725	0,33	14,50	Ye	0,2	93,32
CEM II/A-LL 42,5 R w/z = 0,25	0,25	7011	5609	0,36	13,45	4,80	0,7	98,08
CEM II/A-LL 42,5 R + 10 M% FA + 5 M% SIC W/F = 0,23	0,23	6986	5679	0,33	15,85	9 to William	2,4	98,01
CEM 142,5 R + 5 M% MK w/f 0,23	0,23	4859	3950	0,47	21,65	2,10	3	98,18

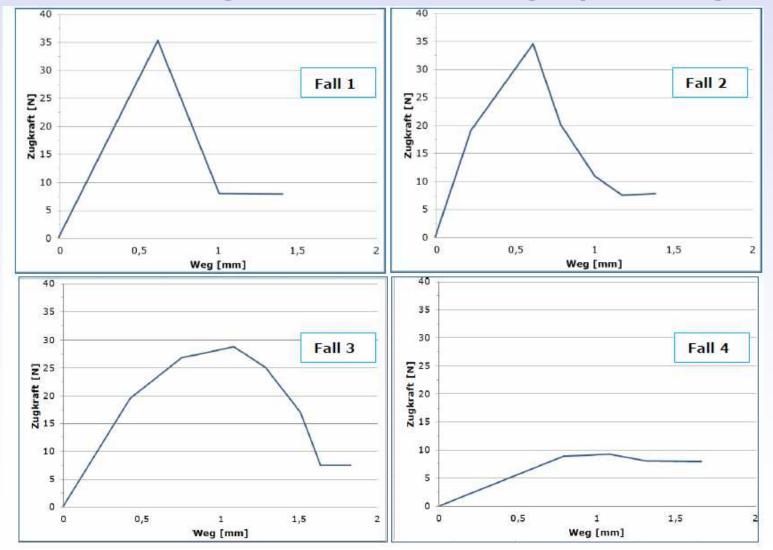


Abbildung 142: Qualitative Darstellung der Versagensarten erdfeuchter Zementleime im zentrischen Zugversuch

Zusammenfassung: Auswertung, Optimierung

Kurventyp	w/f	Z	V	Beurteilung	Auswirkung in der Produktion
Fall 1	<	<	<	Zu trocken	Klebestellen, Gefüge- schaden durch radiale Setzrisse
5 0.5 Wag (seed) 4.3 d	>	<	>	Kommt nicht vor	
	+/-	>	+/+	gut	Maßhaltig, formstabil

Zusammenfassung: Auswertung, Optimierung

Kurventyp	w/f	Z	V	Beurteilung	Auswirkung in der Produktion
gis Fall 1	<	<	<	Zu trocken	Klebestellen, Gefüge- schaden durch radiale Setzrisse
13	>	<	>	Kommt nicht vor	
	+/-	>	+/+	gut	Maßhaltig, formstabil
10 10 10 10 10 10 10 10 10 10 10 10 10 1	<	>	<	CEM I, FA	Bauchige Produkte, Maßabweichungen
To the state of th	+/-	>	>	CEM II, III, (FA+SIC/ FA+SI)	

Zusammenfassung: Auswertung, Optimierung

Kurventyp	w/f	Z	V	Beurteilung	Auswirkung in der Produktion
go fall	<	<	<	Zu trocken	Klebestellen, Gefüge- schaden durch radiale Setzrisse
5 42 Wag beet 5.3 d	>	<	>	Kommt nicht vor	
	+/-	>	+/+	gut	Maßhaltig, formstabil
10 10 10 10 10 10 10 10 10 10 10 10 10 1	<	>	<	CEM I, FA	Bauchige Produkte, Maßabweichungen
15 15 15 15 15 15 15 15 15 15 15 15 15 1	+/-	>	>	CEM II, III, (FA+SIC/ FA+SI)	
FAII 4	<	<	<	Zu trocken; MK, SI	Kollaps nach Transport: Z zu gering bei großen Verformungen
	>	0	>	Zu feucht; SIC, MK, SI	Kollaps unmittelbar

Zugversuche an Beton: 8 mm GK, zwei w/z-Werte

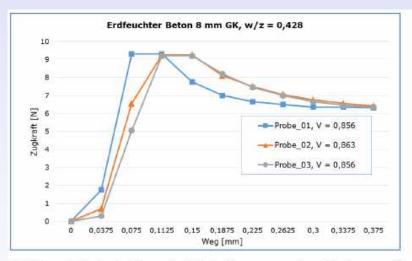


Abbildung 136: Zugkraft von drei Probekörpern aus einer Mischung erdfeuchten Betons mit w/z = 0,428

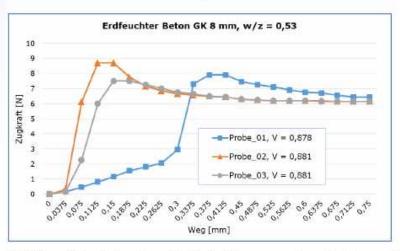
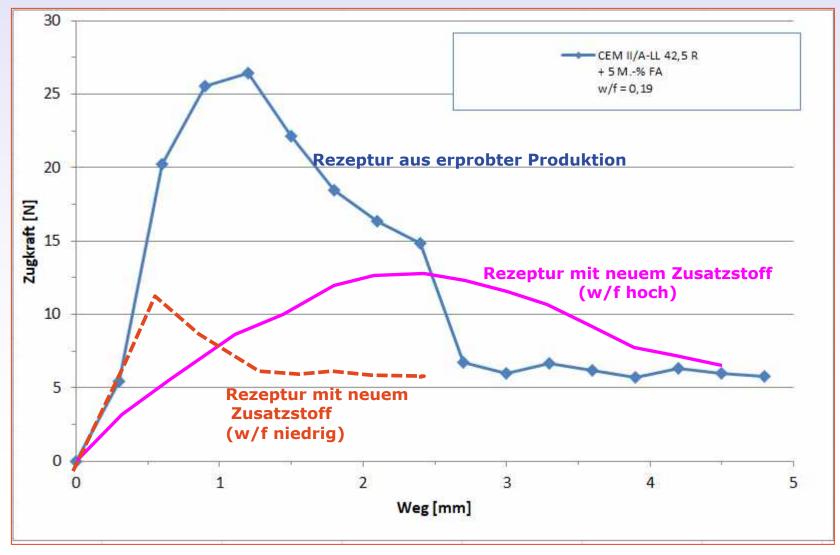
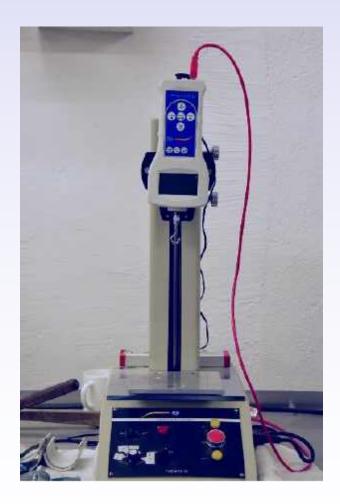



Abbildung 137: Zugkraft von drei Probekörpern aus einer Mischung erdfeuchten Betons mit w/z = 0.53

- Zugkräfte geringer als bei Leimen
- Verdichtungsgrade geringer
- Unterschiede geringer, jedoch feststellbar
- Hoher Verschleiß an Kunststoffformen
- Einfluss von Reibung und Verzahnung erkennbar an hohem Reinigungsaufwand

Zusammenfassung



Zusammenfassung

- Theoretischen Haftkräfte werden stark von der Beschaffenheit der Oberfläche der Partikel dominiert und bestehen aus mehreren Komponenten
- Theoretische Vorhersage der Leimeigenschaften durch Einfluss der Ausgangsstoffe anhand der Versuche zur Zeit nicht möglich
- Unterschiede im Zug-Dehnungsverhalten von Zementleimen (und Beton) sind messbar
- Leime mit Siliziumcarbid und Metakaolin weisen geringere Zugkräfte auf
- Versagensarten der Zugdehnung lassen auf Frischbetonverhalten während der Verarbeitung (sofortige Entschalung) schließen
- Granulometrie der Feststoffe (Sieblinien, Oberfläche) korreliert nicht erkennbar mit den Messwerten
- Zugdehnung einer bestehenden Rezeptur kann mit der Zugdehnung einer neuen Rezeptur verglichen werden
- Prüfverfahren ist schnell, einfach und kostengünstig

Ausblick

Ausblick

Mit neuer Versuchseinrichtung:

- Zwischenzeitlich erkannte Fehlerquellen beseitigen:
 - Krafteinleitung, Formenzylinder mit geringerem Verschleiß, für drei Versuchssätze
- Je präziser das Verfahren, desto präziser die Unterscheidbarkeit von Mischungsvariationen
- Vergleichsuntersuchungen an Zementleimen mit verschiedenen Zementvariationen (Hersteller, Zementart, Festigkeitsklasse),
 Kenngröße für EF-Leime
- Erprobung an industriell verwendeten erdfeuchten Betonen: Größe der Probekörper, Eignung zur Beurteilung alternativer Ausgangsstoffe
 (Zemente, Zusatzstoffe, RC-Körnungen)

Ermittlung der Grünzugfestigkeit erdfeuchter Zementleimgemische als Grundlage für die Optimierung der Produktion von sofort entschalten Betonwaren

Fakultät für Architektur und Bauingenieurwesen 01. Februar 2019

